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The Danish onshore and nearshore has a number of subsurface saline
aquifers, in particular the Gassum Fm., that have attracted interest from
storage developers and emitters as potential CO, storage sites.

GEUS has performed some excellent work defining the geology and
quantifying the available pore-space in identified structures, but there
are no published studies that assess the impact of the surrounding
aquifer on the quantity of CO, that can be injected over a typical
project lifetime, here taken as 25 years.

This study addresses this gap for those storage sites using the Gassum
Fm. as their primary aquifer

Importantly, the assessment focused on dynamic aquifer
performance, considering the influence of aquifer permeability on fluid
movement, injection rates and project lifetime storage capacity by
simulating the whole aquifer performance.

With a licence round upcoming and significant investments by both
state and private bodies in the pipeline, this screening study should
provide further constraint on potential storage volumes and indicate
where appraisal investment could be best allocated.

&) Executive summary - Scope
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storage sites




@ Executive Summary - Results

This dynamic aquifer simulation assessment demonstrates the
importance of considering aquifer quality and connection, and
has identified lower risk, higher capacity sites

For most of the screened sites, Havnsg being an exception,
aquifer quality is likely to be the controlling factor for injection
capacity over a project lifetime, assumed to be 25 years.

Where sites are well connected to a thick, high permeability
aquifer, as appears to be the case at Havnsg, the project lifetime
storage capacity ranks with the largest North Sea stores, but with
costs likely lower due to an onshore location.

Stores in areas of poorer aquifer quality are likely to be aquifer
constrained and have a high risk of poor injection performance
that can only be partially mitigated by additional wells.
Nonetheless the estimated capacities are sufficient to store local
emissions.

Assessed storage capacity ranges for evaluated projects.
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) Scope of study

Aims of screening study

Experience shows that the practical capacity of a CO, storage
site is often limited by the quality (thickness, permeability and
connectivity) of the aquifer connected to the injection point,
rather than the total pore volume of the trap.

GEUS [1, 13, 14] have provided an excellent assessment of the
pore space of identified traps. However, no dynamic aquifer
assessment appears to have been published for the Danish
onshore & nearshore and leading to concern that decisions
might be being made without a full appreciation of the
importance of the wider aquifer quality.

A dynamic simulation was performed using an aquifer model
built from publicly available data to test the factors controlling
capacity for the selected sites in the Gassum Fm.

The screening is not designed to provide definitive capacity
estimates, rather to illustrate the importance of assessing the
dynamic performance of the aquifer and to assess which
proposed sites may be limited by aquifer or by trap capacity.

It also makes no attempt to address containment risk through
seal breach, fault leakage, fault reactivation or other
mechanisms.

Impact of aquifer size and quality on storage capacity

* To store CO, in a subsurface saline aquifer, we need to be able to
inject the required quantity into the aquifer over a project lifetime.

* To inject the CO,, space must be made by moving the aquifer brine
out of the way. This can be achieved by either removing brine from
the aquifer, or by compressing the brine by increasing the aquifer
pressure by the CO, injection.

*  Unfortunately, brine is rather incompressible and the degree of
pressurisation is limited by the strength of the sealing units, such that
we expect only approximately 0.5% volume reduction through
pressure increase. So, for every 1 m3 of CO, injected we need to
compress and move 200 m3 of brine.

*  The ultimate quantity of CO, that can be injected will thus be limited
by the volume of the connected aquifer

®* The rate at which it can be injected and hence the total injection
volume over a finite project lifetime will be limited by the aquifer size,
but also its permeability, which controls the flow rate of the brine.
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Examples of injection performance at sites with differing aquifer quality. Total injected
volume is in green, with injection rate in orange. Site A has a large, high-quality aquifer
that can support injection, whereas site B has an aquifer of limited size, effectively a
sealed box, with the injection rate rapidly tailing off and the injection volume plateauing




ZD) structural maps

® Grids of the Top Gassum Fm. depth and thickness
were constructed from published maps [1,2,3,13, 14]
and released well data, and formed the basis of the
aquifer model construction.

® |t should be noted that the underlying seismic data is
sparse and of varying vintage and quality, reducing
the accuracy of the mapping.

® In particular, faulting at the crest of the structures is
poorly resolved and it is possible that such faulting
could reduce the effectiveness of the overlying
Fjerritslev primary seal.

® Likewise, faulting will create barriers to flow for both
CO, and aquifer brine, and it is expected that such
faulting is more prevalent than currently mapped.

® The well data is biased to the structural highs, making
depth conversion of the low areas difficult. As will be
discussed, the low permeability in the structural lows
act as a major control on dynamic storage capacity.

® Given the points above, further data gathering is
required and is indeed underway. However, until the
new datasets are available and can be incorporated,
the structure map above is considered fit-for-purpose
for an aquifer model.
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® The quality of the aquifer, as described by its thickness, net-to-gross,
porosity and permeability, controls its ability to support brine
movement away from the injection site.
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@ Permeability
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® The relationship enables the generation of upscaled permeability maps
for the aquifer layers in the model.

® It should be noted that the dataset is biased, with most wells drilled
towards crestal locations rather than the deeper flank settings that will Permeability v porosity from core measurements in the Gassum Fm.
control aquifer performance. Collection of such data should be an

appraisal objective.
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) Kh map

The results of the aquifer quality mapping can be compiled into a
Permeability Thickness (Kh) map, calculated by summing the average
net permeability times net thickness for each layer.

Kh is the primary control on both the injectivity of the injection wells and
the ability of the aquifer to move brine away from the injection wells to
make room for the CO,. As such the Kh map provides some immediate
observations on the potential of the different proposed sites.

Havnsa and, to lesser extents Rasnaes and Helgenaes, are expected to
have excellent to good Kh on their crests and to be well connected to
the very high Kh region in the south of the aquifer.

Hanstholm has an excellent crestal Kh, and a good Kh in the
surrounding aquifer, though separated from the wider aquifer by faults.

Lida and Jammerbugt have good crestal Kh, but are separated from the
aquifer by large faults which offset the Gassum Fm., which constrains
the injection capacity.

Gassum, Voldum, Thorning and Skive, while having good Kh on their
crests, are surrounded by low Kh aquifer, limiting their capacity.

The offshore Inez and Lisa structures, while connected to aquifer, have
relatively low Kh.

The Vedsted structure is surrounded by good Kh aquifer, and if the
structure is not separated from the aquifer by faults, the capacity may
be limited by the small trap volume rather than aquifer.

4 RODDIN

4
ISTED
&y
ISTED-3
itemnert, A4S

ED-2

LEGIND

GASSUM

°  ODDESUND-, ¢ Nﬁn&l

J [ 10-100

*kvoLs-1

.‘ssu:a

sensa  HELGENAES
ROSNAS

*+ SKIVE

b

\c
(
-

Transmissibility (Kh), Dm
B <=0.1000
[ 0.0001-0.001
[ 10.001-0.01
[ 10.01-01
L1011
[ 11-10

-
N

B > 100

[ Prioritised sites

[] Other identified sites
Wells used in study
E&A wells : "

—— Maritime Boundaries .

|
!

¢

~

Permeability thickness map for the Gassum Fm.



@ Aquifer model construction

* A static model was built for the full aquifer extent to Top Gassum Depth
ensure that the displacement of brine away from the
injection points was properly modelled without having

to introduce boundary conditions. T

* An expending cartesian grid was employed to enable a
computationally feasible grid size, with a sufficiently
small cell size over the areas where CO, injection and
migration is expected. A central 100 m grid spacing,
expanding gradually to 20,000 m was designed for
each structure modelled.

* The mapped Gassum Fm. aquifer thickness was
divided into 20 layers based on a proportional slicing.

* The properties in the layers (net-to-gross, porosity,
horizontal permeability) were populated from the well
data, together with the porosity-depth and porosity-
permeability trends as discussed previously, and using Example section showing
appropriate upscaling. Kv/Kh was upscaled for each vertical layering of Kh
layer, interpolated and used to calculate vertical | — [
permeability from horizontal.

* Faults from the available publications [1,2,3,14] were
incorporated into the model and were assumed to act
as barriers to flow. In practice there are likely to be
more faults and hence more baffles and barriers than
currently modelled.




@ Relative permeability

There is limited data available to constrain the capillary and
relative permeability curves to describe two-phase flow in the
simulation.

Brine-air capillary curves are available from the SCAL analysis
performed on the Stenlille-1 Gassum Fm core and this was used
to define the Pc curve, with appropriate correction to CO,-brine
and upscaling.

CO, - brine relative permeability data is not available for the
Gassum Fm. Hence upscaled curves based on Sleipner data [9]
were employed. As the Utsira aquifer at Sleipner is a similar
quality to the Gassum Fm. aquifer over the proposed storage
sites, this is considered a reasonable approximation.

In practice, the simulations show that the capacities of almost all
Gassum Fm. structures are limited by the ability of the aquifer to
dissipate pressure away from the injection site, which is
controlled by single-phase flow of brine and is not influenced by
two-phase flow and the relative permeability and capillary entry
curves.

However, if trap capacity or plume migration becomes a matter
of concern, a more detailed review of the two-phase flow
parameters and possibly a fine scale simulation would be
beneficial.
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) Pressure and temperature

Pressure data is relatively sparse due to the age of the wells and the
lack of hydrocarbons, but sufficient data is available to draw
reasonable conclusions on the pore pressure and injection pressure
limits.

The available DST and RFT data supports an assumption of
hydrostatic pressures with a gradient of 0.106 bar/m. This gradient
is consistent with the measured brine densities of the Gassum Fm.
pore fluids, discounted for less saline pore fluids in the overburden
section.

There is scatter around this gradient, but it is unclear whether this is
due to measurement error or is an indication of significant pressure
compartmentalisation.

The available leak-off tests (LOT) indicate a fracture gradient of 0.18
bar/m, but an anomalous reading at Karlebo-1 gives a gradient of
0.15 bar/m. This latter figure is used to constrain the high case
maximum injection pressure.

For the base case, a maximum injection pressure equal to 1.3 times
the original pore pressure (0.138 bar/m) is used, a conservative
approach justified by the uncertainty on crestal seal capacities and
legacy well penetrations.

A temperature gradient of 28°C/km Is assumed based on [3].
There will be lateral temperature variations, especially when
overlying salt domes, but results are relatively insensitive to
temperature.
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) Simulation

Simulation was performed using the OPM Flow simulator [10], employing
the inbuilt CO2store functionality [11], which incorporates the Span and
Wagner CO2 PVT [12].

Simulations were performed at each proposed Gassum Fm. storage site to
assess the maximum quantity of CO2 than could be injected into and
contained within structure, given constraints on maximum aquifer
pressure at the injection site and any surrounding weak points.

Simulations were performed for increasing number of injectors until
additional wells failed to add significant capacity

The aquifer pressure constraint was imposed using a bottom hole
pressure (BHP) limitation, with an additional maximum well rate based on
a reasonable maximum tubing head pressure (THP) of 100 - 120 bar,
assuming a 5 in injection tubing completion.

With a base case number of wells established, low case and high case
sensitivities were performed with the horizontal permeabilities scaled by
0.33 and 2 respectively. Other sensitivities were assessed, including a
high case injection pressure increasing from 0.18 to 0.15 bar/m, butin all
cases, the aquifer permeability was the most sensitive parameter.

Simulations were performed for 25 years injection and a period of
relaxation. Additional runs were performed to assess plume movement
over several millennia post closure, but as with one exception, all sites
were underfilled after 25 years injection, this was of limited interest.

Cell Results:
SGAS
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@ Havnsgo

* Havnsg benefits from a good aquifer at the injection
point and a strong connection to the excellent quality
regional aquifer to the south. This can be seen by the
broad extent of the aquifer pressure increase, which

enables large volumes of CO, to be injected.

* Given the excellent connected aquifer, capacity is

primarily limited by the pore space in closure and the
saturation of CO, that is achieved in the net sands,
but also Kv/Kh & injector placement. Core analysis
will be required to fully assess the Scq,, but itis likely
to be in the range of 0.6 - 0.8.
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@ Gassum

The Gassum structure is a high relief salt
cored anticline separated from the wider
aquifer by a rim syncline with a saddle to the
south.

The aquifer quality is well constrained by the
Gassum-1 well on the crest, which had 73 m
of net sand with an average porosity of 25%
and good to excellent permeabilities.

Simulation shows that the excellent aquifer
quality on the crest can support high initial
injection rates but that the rate rapidly
declines to 1.4 Mtpa, constrained by brine
flow through the saddle to the wider aquifer.

2 wells are modelled as being sufficient to
meet the injection capacity, with additional
injectors having only a minor increment.
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3 Time Step: 25/27 26 Dec 20+ 3 =3 Time Step: 25/27 26 Dec 204
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* The excess pressure map shows that the dissipation
of injection pressure into the aquifer is largely
through the saddle point to the south, which
constrains the long-term injection rate once the
structure itself has been pressurised.
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@ Lisa

* The excess pressure map shows that the dissipation
of injection pressure into the aquifer is largely to the
east, with the fault acting as a barrier.

* The limited aquifer to the west results in the injected
CO, preferentially moving eastwards. On cessation
of injection, the CO, equilibrates under gravity and
moves back up-dip to the structural crest.

* There is significant vertical Kv/Kh variation and likely
vertical barriers which will affect migration in the
injection and initial relaxation phases, although they
may not be effectlve on Ionger geologlcal
timeframes.|»— 11— 1 pem—"
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@ Inez

The excess pressure map shows a broad dissipation

of injection pressure into the aquifer in all directions.

The saturation plots show that the relatively uniform
aquifer quality without major intra-formational
barriers allows the formation of an inverted cone
shaped plume, which is slow to relax given the
relatively low permeabilities.
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The excess pressure map shows that the dissipation
of injection pressure into the aquifer is largely
through the saddle point to the south, which
constrains the long-term injection rate once the
structure itself has been pressurised.

The saturation plots indicate a relatively slow
migration of the CO, from the injection point to the
crest of the structure, which will take several hundred
years to complete. Nonetheless the injected CO, is
modelled to remain in the structural closure.
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* There are no wells in the immediate vicinity of
the structure, but the Bgrgium-1 and Vedsted-1
wells to the east, albeit in more proximal
locations for sediment input, have net sand of 80
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on the crest is excellent, dynamic capacity is
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09% 1
09% 1

08%1
08% 1

140

g g < °
120 High =
9 = 4 E
- ) ;
S 100 2 2 = I
i 80 :3, =
S — Central =z ? g
5 60 o =
g e E 1 — Injection rate, MTPA
wn 40 — Total injected MT
v}
20 Low 2024 2029 2034 2039 2044 2049 2054 2059
0 Year

1 well 2 wells 2 wells



@ Jammerbugt

* The excess pressure map shows that the dissipation of
injection pressure into the aquifer is limited to the
western flank of the structure and struggles to cross
the western graben, with most pressure dissipation
taking place along the structure axis

* The CO, plume after 25 years injection only occupies a
small proportion of the structure and the internal shale
layers within the Gassum Fm. are modelled to act as
vertical permeability barriers for a 50 year and possibly
longer relaxation period.
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